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Abstract

From 2007 to 2013, the southeastern Bering Sea was dominated by extensive sea ice and

below-average ocean temperatures. In 2014 there was a shift to reduced sea ice on the

southern shelf and above-average ocean temperatures. These conditions continued in

2015 and 2016. During these three years, the spring bloom at mooring site M4 (57.9˚N,

168.9˚W) occurred primarily in May, which is typical of years without sea ice. At mooring site

M2 (56.9˚N, 164.1˚W) the spring bloom occurred earlier especially in 2016. Higher chloro-

phyll fluorescence was observed at M4 than at M2. In addition, these three warm years con-

tinued the pattern near St. Matthew Island of high concentrations (>1 μM) of nitrite occurring

during summer in warm years. Historically, the dominant parameters controlling sea-ice

extent are winds and air temperature, with the persistence of frigid, northerly winds in winter

and spring resulting in extensive ice. After mid-March 2014 and 2016 there were no cold

northerly or northeasterly winds. Cold northerly winds persisted into mid-April in 2015, but

did not result in extensive sea ice south of 58˚N. The apparent mechanism that helped limit

ice on the southeastern shelf was the strong advection of warm water from the Gulf of

Alaska through Unimak Pass. This pattern has been uncommon, occurring in only one other

year (2003) in a 37-year record of estimated transport through Unimak Pass. During years

with no sea ice on the southern shelf (e.g. 2001–2005, 2014–2016), the depth-averaged

temperature there was correlated to the previous summers ocean temperature.

Introduction

The Bering Sea is a productive high-latitude sea situated between the Arctic Ocean and the

North Pacific (Fig 1). This marine ecosystem produces ~40% of the United States’ catch of fish

and shellfish, supports 25 species of marine mammals and 35 million seabirds, and provides

three quarters of the subsistence harvest supporting 55,000 Alaska Natives [1]. While the
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eastern Bering Sea supports a rich and robust ecosystem, it also responds rapidly to climate

change (e.g., [2,3]), and, as a subarctic sea, it is predicted to be sensitive to such changes [4].

The eastern Bering Sea is ice-free during the summer and much of the fall. Sea ice usually

begins to form on the northern shelf in December, with strong, frigid northerly winds both

opening polynyas where sea ice forms and advecting the ice southward [5]. The leading edge

melts, cooling and freshening the water column. Typically, ice appears on the southern shelf in

January, reaches a maximum in February or March, and is gone by mid-May [6]. In cold

years, sea ice advances more than 1000 km from the Bering Strait (66˚N) to the Alaskan Penin-

sula, while in warmer years, ice remains north of 58˚N.

Historically, the southeastern Bering Sea has been characterized by high year-to-year var-

iability in sea-ice extent in March and April [7]. This high variability was interrupted in

Fig 1. The eastern Bering Sea shelf. Colored lines indicate maximum ice extent in 2014 (orange), 2015 (red), and 2016 (purple). The

locations of three long-term moorings (M2, M4, and M5) are shown. The star in the Gulf of Alaska and the square in the Bering Sea are

locations of interpolated winds and sea surface temperature used in this manuscript. The pale shading indicates the area where the time

series of percent ice cover as a function of date and latitude was calculated. The 50-m, 100-m, and 200-m isobaths are shown.

https://doi.org/10.1371/journal.pone.0185464.g001
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2001 by a five-year period of low (almost nonexistent on the southern shelf) sea-ice extent

and warm ocean temperatures (2001–2005). To improve understanding of how long-term

warming can impact this ecosystem, a major study (Bering Sea Project, http://www.nprb.

org/bering-sea-project) was designed to explore this ecosystem from 2007 to 2010. Because

of the historical record of high inter-annual variability, it was expected that at least one of

the project years would also support warmer (less sea ice) conditions. Unfortunately for the

Bering Sea Project, the warm period of 2001–2005 was followed by a period of extensive sea

ice during spring and cold ocean temperatures over the entire eastern shelf (2007–2012)

[7,8]. During the intermediate year, 2006, some ice was observed on the southern shelf and

ocean temperatures were near normal. To examine the impact of warming on the ecosystem,

data from the Bering Sea Project were combined with observations collected in the early

1990s through 2016 as part of several NOAA programs (e.g., Ecosystem Fisheries Oceanog-

raphy Coordinated Investigations (EcoFOCI), Bering-Aleutian Salmon International Survey

(BASIS), Coastal Ocean Program) and NSF-supported studies (Inner Fronts, Pribilof

Domain).

A major finding from the Bering Sea Project is that a transition exists at ~60˚N that

divides the eastern Bering Sea shelf into northern and southern regions [6]. The southern

shelf ecosystem, which supports most of the commercial fisheries, is sensitive to periods of

two or more years of no sea ice. Specifically, reduced sea ice in March and April results in

warmer (>2˚C) than average ocean temperatures. When consecutive ice-free years occurred

in 2001–2005 on the southern shelf, there was a profound effect on the ecosystem, including:

decrease in the populations of large, lipid-rich zooplankton [7,9,10]; increase in the num-

bers of small zooplankton [9]; reduced lipid content in young-of-the-year walleye pollock

(Gadus chalcogrammus) in late summer [7,11]; reduced winter survival of young-of-the-

year pollock [12]; and finally, failure of pollock to recruit to the fishery three to four years

later. Poor recruitment during the previous warm period (2001–2005) precipitated action

by the North Pacific Fisheries Management Council to reduce the Total Allowable Catch of

pollock.

At the end of the Bering Sea Project in 2010, it was not known how long the cold period

would continue, nor were there well-formed hypotheses of whether the southern Bering Sea

would shift back to high year-to-year variability or into another multi-year period (stanza)

of warmth. This paper examines the southeastern Bering Sea starting when conditions

turned from cold to warm in 2014. Fortunately, EcoFOCI’s and BASIS’ long-term observa-

tional plan supported extensive field seasons in the Bering Sea in 2014 (five oceanographic

cruises with 79 days at sea) and 2016 (6 oceanographic cruises with 78 days at sea). In 2015,

the long-term plan was structured so that most of the EcoFOCI/BASIS research would be in

the Gulf of Alaska. Predictions that 2015 would also be warm resulted in additional funding

to plan and execute an extensive field season (four cruises with 59 days at sea) in the Bering

Sea.

This paper explores the temporal variability on the southern Bering Sea shelf during three

consecutive warm years (2014–2016) and compares these years to previous years (1995–2013).

Patterns of variability in ocean temperatures and chlorophyll fluorescence are examined at two

long-term mooring sites, and related to the presence of ice in March and April. While atmo-

spheric forcing is the primary driver of sea ice on the Bering Sea shelf, evidence is presented

that the extremely warm conditions in the Gulf of Alaska in 2015 played a role in limiting the

southern extent of ice that year. How chlorophyll fluorescence varies during these years is dis-

cussed, as is the surprisingly high and unforeseen accumulation of nitrite in oxygenated waters

near St. Matthew Island. These observations reveal similarities and differences in the lower tro-

phic system between the two warm periods: 2001–2005 and 2014–2016.

Warm conditions in the Bering Sea: Physics to fluorescence
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Data and methods

Three sources of sea-ice data were used. The first source was the National Ice Center (http://

www.natice.noaa.gov/), with data available from 1972 to 2002. The second source (2002–2011)

was the Advanced Microwave Scanning Radiometer EOS (https://nsidc.org/data/AE_SI12/

versions/3). After October 2011, Special Sensor Microwave/Imager (SSM/I) and Special Sensor

Microwave Imager Sounder (SSMIS) from the National Snow and Ice Data Center (ftp://

sidads.colorado.edu/pub/DATASETS/nsidc0079_gsfc_bootstrap_seaice/final-gsfc/north/

daily) were used. Details are provided by Stabeno et al. [7].

Reanalysis data were obtained from the North American Regional Reanalysis (NARR).

NARR uses the high-resolution National Centers for Environmental Prediction (NCEP) Eta

model (~32 km grid size) and includes additional assimilated parameters to improve the

reanalysis product [13]. Reanalysis estimates of winds are available at 3-hr intervals for NARR.

The NARR data were provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from

their web site at http://www.esrl.noaa.gov/psd/.

Data collected from a series of moorings deployed at two biophysical sites (M2 and M4)

included temperature (miniature temperature recorders, SBE-37 and SBE-39), salinity (SBE-

37), and fluorescence (WET Labs DLSB ECO Fluorometer). At M2, moorings are typically

deployed and recovered in May and September, while at M4 one year-long mooring is typically

deployed in September. In addition, current measurements were collected at a site in Unimak

Pass [14]. All instruments were prepared and the data were processed following the manufac-

turer’s specification. Conversion of fluorescence to chlorophyll was performed using the nomi-

nal relationships provided by the manufacturer. Those relationships are meant to provide a

means of comparing the fluorescence measured using different sensors and provide an esti-

mate of the amount of in situ chlorophyll. It is acknowledged that the relationships provided

by the manufacturer cannot represent the range of species and physiological states of the cells

found in our samples. Stabeno et al. [7] discuss details of M2 and M4 mooring designs and

data processing, and the calculation of the depth averaged temperature at M2.

Since 2003, the EcoFOCI and BASIS programs have collected discrete oceanographic sam-

ples for nutrient analysis, with some variance in the handling and processing of these samples.

During EcoFOCI cruises, samples were filtered through 0.45 μm cellulose acetate filters and

either analyzed at sea, or returned to NOAA’s Pacific Marine Environmental Laboratory for

analysis following protocols of Gordon et al. [15]. During BASIS, samples collected between

2003 and 2011 were stored frozen without filtration, and analyzed at the University of Wash-

ington Marine Chemistry Laboratory (UWMCL) following protocols of Knap et al. [16]. In

subsequent years, BASIS sampling and analysis followed EcoFOCI protocols. Comparable

methods were used at the two laboratories including calibration of labware, preparation of pri-

mary and secondary standards, and corrections for blanks and refractive index. Replicate anal-

ysis found good agreement between PMEL and UWMCL nutrient protocols, and between

filtered and unfiltered frozen samples [17]. In both laboratories, nitrite analysis was completed

using segmented flow analysis where nitrite was diazotized with sulfanilamide and coupled

with N-(1-naphthyl)-ethylenediamine to form a red dye, and measured with colorimetric

detection.

The Prawler is a platform that utilizes wave energy to move an instrument package up the

mooring line using a ratcheting device, and then collects data during a free-fall down the

mooring line. The rapidity of cycling is dependent upon the available wave energy and settings

on the mooring. In May 2016, a Prawler mooring was deployed at M2 (72-m bottom depth)

and profiled the upper ~45 m of the water column approximately every two hours. Among the

various sensors deployed on the Prawler was a Wet labs ECO FLNTU fluorometer that

Warm conditions in the Bering Sea: Physics to fluorescence
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measured chlorophyll-a fluorescence. This instrument was calibrated and the data processed

according to manufacturer’s specifications.

Results and discussion

Patterns of interannual variability

Sea ice is the dominant characteristic of the eastern Bering Sea shelf [6,7], with March and

April ice extent setting up the marine ecosystem for the following spring, summer, and

autumn. Moorings have been deployed at M2 near the center of the southeastern Bering Sea

shelf (Fig 1) almost continuously since 1995 and provide an extensive data set to examine how

March/April sea ice impacts the ocean over the southern shelf.

The interannual variability in spring ice cover discussed in the introduction is evident in

the time series of mean ice concentration in a box roughly 100 km on a side centered at M2

(Fig 2A). The first warm/low-ice period (2001–2005) ended in 2006. Even though the areal

average ice cover was only slightly higher in 2006 (~5%) than that in 2004 (~2%), average tem-

perature was ~1.2˚C cooler. Even small amounts of ice can efficiently cool the water column

through melting (latent heat flux). In addition, sea ice persisted ~50 km north of the M2

box through 11 May 2006 indicative of cold atmospheric conditions. Sea ice was less extensive

in 2011 than in the other years of the recent (2007–2013) cold period. During this year, sea ice

was primarily present at M2 in March, which resulted in the depth-average ocean

Fig 2. Ice and temperature at M2. (A) The average percent of areal ice cover in a 2˚ × 1˚ box (163–165˚W, 56.5–57.5˚N) around

M2 during March–April. (B) The depth-averaged hourly temperature at M2. The circles are a replotting of the percent ice cover data

found in (A). (C) The depth-averaged temperature anomaly (relative to 1995–2009) at M2.

https://doi.org/10.1371/journal.pone.0185464.g002
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temperatures at the mooring being near average rather than colder than average (Fig 2C). Both

2012 and 2013, however, had extensive sea ice in the vicinity of M2 in April, resulting in cold

ocean temperatures. The recent cold period ended in 2013 and was followed by three warm

years, 2014, 2015, and 2016. Temperatures in 2015 and 2016 were particularly warm (daily

depth-averaged temperature anomalies approaching 4˚C at times, Fig 2C). Note that ocean

temperatures were warm even in winter, with the minimum temperature in January through

March of 2015 and 2016 approximately equal to the warmest summer temperatures in 2009

and 2012 (Fig 2B).

Over the southern Bering Sea shelf, the presence/absence of sea ice in March and April

largely determines the depth-averaged ocean temperature (Figs 2 and 3A), not only for spring,

but for spring through autumn. Years in which there was no sea ice in March and April were

strongly associated with warm (>3.5˚C) average-annual ocean temperatures (Fig 3A). This

year-long response is a result of seasonal factors that can combine together to create a warm or

cold year. For instance, above average ocean temperatures in January and February can delay

the arrival of ice [18], and the lack of ice in March and April result in above average ocean tem-

peratures in those two months. Finally, the above average ocean temperatures in May persist

through October, and it is only in November with the return of winter conditions that heat

can be quickly removed from the water column. The inverse pattern occurs when there is

extensive ice in March and April: cold ocean conditions in January and February permit

arrival of ice, presence of ice in March and April coincide with cold ocean temperatures and

these cold ocean temperatures persist for the remainder of the year.

Areal ice concentrations in March and April were inversely related to annual ocean temper-

atures (Fig 3A). In years when ice was present (>10%), the depth-average ocean temperature

at M2 decreased by ~2˚C as ice cover increased from 20 to 70%. In ice-free years, the range in

annual temperature, however, was even greater, >3˚C. Comparing the annual mean

Fig 3. Ocean temperature and sea ice persistence. (A) Mean annual depth-averaged temperature at M2 as a function of average percent

of areal ice cover in a 2˚ × 1˚ box (163–165˚W, 56.5–57.5˚N) around M2 during March–April (i.e., Fig 2A). Years with a data gap of more than

100 days (e.g., 1995, 1996, 2010, and 2014) are not included. Autumn data for 2009, 2013, and 2016 were estimated by using the

relationship between September average ocean temperature (ST) and October-December (autumn) average temperature (AT): AT = 0.89

ST—0.60, R2 = 0.85. (B) Annual average temperature for years with little or no ice in March-April as a function of the monthly mean

temperature in September of the previous year. The open circle represents the average annual temperature in 2006 versus September

mean temperature in 2005.

https://doi.org/10.1371/journal.pone.0185464.g003
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temperature during years with little or no ice to the previous year’s mean September tempera-

ture (September has the highest depth-averaged temperature) reveals a significant relationship

(R2 = 0.86, p<0.01) if 2006 is not included in the analysis. If 2006 is included, then the correla-

tion is not significant (p>0.05), supporting the claim that even a low percentage of areal ice

cover, especially if it is in April, can significantly cool the water column.

Temperature in 2014–2016

To investigate the water column in more detail during the most recent warm period, we exam-

ined the near-surface and near-bottom temperatures at M2 and M4 in 2014–2016. At M2, the

near-surface thermistors were at 4 m in May through September and at 11 m the remainder of

the year, while at M4 the near-surface thermistor was at 11 m for the entire year. Near-bottom

thermistors were ~10 m off the bottom for all moorings for each year. Both M2 and M4 were

deployed in the middle domain near the 70-m isobath (Fig 1). The middle domain (water

depth 50–100 m) on the eastern Bering Sea shelf is characterized by a two-layer structure from

mid-spring through early autumn, with a surface mixed layer typically 20–25 m deep [19, 20].

At its maximum extent, sea ice barely covered M4 in 2014 and 2015, but in neither year did it

reach M2 (Fig 1). Maximum ice extent in 2016 was less than in the previous two years, not

reaching M4 let alone M2.

Fig 1 shows an areal view of maximum ice extent, while Fig 4A shows the temporal variabil-

ity of ice concentration and extent over the middle shelf (pale hexagon in Fig 1) during these

three warm years. In these three years, sea ice remained largely north of M4 (57.9˚N), as did

the sea ice in 2001, 2002, and 2003 (red lines Fig 4B). The largest differences between the two

periods was that the ice in March 2003 was more extensive than in March 2016 and ice per-

sisted at M4 from mid-March to early June 2015 (i.e., longer than the other years). For com-

parison to ice extent in a cold year, the time series of the latitude of the ice edge for 2010 is

shown (blue line in Fig 4B, first panel).

Fig 4. Winds, currents and sea ice. Panels (A)–(C) are March–May time series from 2014 (left), 2015 (middle), and 2016

(right). (A) 5-day average winds at 57.32˚N, 166.32˚W. Vectors are color-coded according to air temperature. (B) Time series

of contours of daily areal ice concentration for 0.25˚ latitude bands in the light-shaded area in Fig 1. The latitudes of the two

long-term moorings on the southern Bering Sea shelf are indicated with dashed lines, as is M5 in the transition zone between

the southern and northern shelf. Daily maximum ice extent is indicated for 2010 (blue) and 2001, 2002, and 2003 (red). (C)

Daily mean derived currents through Unimak Pass. Lines are color-coded by SST anomaly upstream near the Shumagin

Islands (star in Fig 1, 54.625˚N, 161.125˚W). Positive indicates inflow into the Bering Sea.

https://doi.org/10.1371/journal.pone.0185464.g004
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Ice extent is determined largely by atmospheric forcing [5]. Frigid winds out of the north or

east open polynyas (which permit ice formation), transport the ice southward and cool the

water column into which ice is being advected. In the first half of March in each year (2014–

2016), cold southward winds (Fig 4A) forced the ice southward. After March 21 in 2014 and

2016 there were no cold northerly or northeasterly winds, while in 2015 cold northerly winds

persisted into mid-April. These winds in 2015, however, did not result in extensive sea ice over

the southern shelf, but did help to prolong the presence of ice near M4 (Fig 4B).

Melting ice rapidly cools only the surface waters, while cooling of near-bottom waters

occurs only after vertical mixing of the water column [18]. The three largest (longest) occur-

rences of ice at M4 (one in March 2014, the others in February and April 2015; Fig 5A) show

this cooling of near-surface temperatures caused by melting ice, with the bottom temperatures

largely unaffected. Coincident with the surface cooling is freshening of the near-surface water,

which stabilizes the water column. Historically, if ice is present at a site for more than a few

weeks, winds and tides mix the water, resulting in a cold (~ -1.7˚C) and less saline water col-

umn [18].

After the first ice event in mid-March 2014, ice remained north of M4 and near-surface

temperatures were only slightly cooler at M4 than at M2 through mid-August (Fig 5). In con-

trast, the third time ice was present at M4 in late April 2015 it persisted for ~10 days resulting

in colder (~2˚C) surface temperatures at M4 than at M2 throughout the summer. In 2016,

even without ice, near-surface temperatures were cooler at M4 than at M2. Bottom

Fig 5. Moored biophysical measurements. The time series in 2014–2016 of near-surface and near-bottom

temperature at (A) M4 and (C) M2, and chlorophyll fluorescence at ~11 m at (B) M4 and (D) M2. All data have

been low-pass filtered with a 35-hour Lancsoz filter. The pale green stripes in (A) indicate the presence of sea

ice (>15% ice cover). Note that (A) and (C) have the same aspect ratio, but the scale is shifted by 2˚C, and

that (B) and (D) have different scales. The gray in (C) indicates the range of temperature at M4 and is to ease

comparison between M2 and M4. Fluorescence, indicated by pale green in (D), was a short period of

extremely high variability.

https://doi.org/10.1371/journal.pone.0185464.g005
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temperatures had a similar pattern to near-surface temperatures in the spring, but in all three

years, warming of the near-bottom waters was greater at M4 than at M2. This warming was

great enough that in the fall, when the water column became well mixed (e.g., when near-sur-

face and near-bottom temperatures were the same), there was no significant difference

between M2 and M4 temperatures (Fig 5C).

Near-surface temperatures varied among the three years, with near-surface summer tem-

peratures ~2˚C colder in 2015 than in 2014 or 2016. This interannual difference occurred at

both mooring sites, even though the depth-averaged temperatures in 2015 at M2 exceeded

those in 2014 (Fig 2B). This apparent contradiction between near-surface and depth-averaged

temperatures resulted from a deeper (~25%) mixed layer in 2015 than in 2014. In contrast to

the surface waters, near-bottom temperatures at M2 were almost identical in the three years.

Bottom temperatures at M4, however, were more variable among the years likely as a result of

the presence or absence of sea ice.

Chlorophyll fluorescence and nitrite in 2014–2016

While the most obvious impact of the presence of sea ice after mid-March is cold ocean tem-

peratures, ice also influences the timing of chlorophyll blooms. The spring chlorophyll bloom

in years with extensive sea ice in March and April is earlier (April) than years with no ice in

March or April [7,8]. In addition, ice associated blooms are often associated with different taxa

than open water blooms [8]. How do the blooms in 2014–2016 compare to earlier findings?

In April 2015, the stratification at M4 resulting from melting ice was associated with

increased chlorophyll (Fig 5A and 5B). This high chlorophyll may be due to ice-associated phy-

toplankton taxa comprised of numerous chains of large diatoms; details are described by

Duffy-Anderson et al. [21]. A similar but weaker event occurred in March 2014. The large val-

ues of fluorescence (pale green; Fig 5D) at M2 in late March were highly variable and associ-

ated with strong winds. In contrast, the high chlorophyll concentrations at both sites in May

and into June in 2014 and at M2 in 2015 were associated with thermal stratification of the

water column (Fig 5). At both M2 and M4, periods of higher chlorophyll occurred throughout

the summer and were associated with periods of vertical mixing, which introduced nutrients

into the surface layer. Chlorophyll fluorescence was substantially higher at M4 than at M2 dur-

ing the spring bloom period (April/May) in the first two years (the fluorometer at M4 failed in

2016) and during the fall bloom period (September) in 2014 (Fig 5B and 5D). These results are

consistent with prior research that indicated that August/September chlorophyll levels in the

region near M4 were some of the highest on the shelf in both warm and cold years [22].

Finally, during the autumn, increased chlorophyll occurred with the beginning of fall mixing

of the water column.

In 2016, the fluorometers deployed on both the winter and summer moorings at M2

showed much higher chlorophyll fluorescence values than in the other two years. In addition,

the bloom began in mid-April earlier than is typical for a year without sea ice [7,8], likely a

result of mid-April stratification of the water column. Unfortunately, the fluorometer at M4

failed, preventing comparison with M2, but this more intense bloom at M2 was captured by a

companion profiling-mooring, the Prawler (Fig 6). Upon deployment of the Prawler in the

beginning of May, the spring phytoplankton bloom was already underway and concentrations

were similar to those measured on the main M2 mooring at 11 m. In mid-May the chlorophyll

appeared to sink below 11 m. A band of higher chlorophyll fluorescence concentrations per-

sisted at the interface between the surface and bottom mixed layers. This slightly higher fluo-

rescence along the interface was surprising since subsurface blooms while common in the

northern Bering Sea are rarer at M2 [6].
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Considerable variability on time scales of less than daily is evident in this time series (Fig 6).

In the upper ~15 m of the water column, a diurnal cycle is evident, with minimum florescence

during daylight hours (photoinhibition). Deeper in the water column (especially during 15–21

May), a semidiurnal signal is evident. This is likely due to advection by semidiurnal tides [20].

In addition to warmer temperature and later spring blooms during years with reduced sea

ice [7,8], other parts of the lower trophic levels also respond differently in warm and cold

years. The presence of sea ice is associated with high-energy ice algae, which is source of food

for lipid-rich zooplankton [21]. Noting this, it is not surprising that distinct differences

between zooplankton populations during the warm period (2001–2005) and the cold period

(2007–2013) occurred. Some of the mechanisms that result in other differences between warm

and cold stanzas, however, are not clear. One such difference is the presence of high nitrite

concentrations during warm years.

During warm conditions in 2005, there appeared to have been a disruption in the nitrogen

cycle (i.e., nitrification) in the vicinity of St. Matthew Island [17]. Nitrification is the two-step

oxidation of ammonium to nitrate. The first, rate-limiting, step is ammonium oxidation to

nitrite, followed by nitrite oxidation to nitrate. Thus, nitrite is a short-lived intermediate in the

nitrogen cycle and usually does not accumulate in aerobic waters. However, in the summer of

2005, nitrite concentrations southeast of St. Matthew Island exceeded 4 μM (Fig 7). This was a

transitory feature that was serendipitously observed by two independent research programs.

This feature was not observed during the cold years of 2007–2011, but unusually high (1–

8 μM) concentrations were once again observed in 2014–2016 concomitant with warmer con-

ditions. An associated decrease in ammonium concentrations was reported by Mordy et al.
[17], suggesting that this transitory nitrite pool was due to an interruption of nitrification in

the water column. It is unclear why warmer temperatures (or reduced ice cover) on the south-

ern shelf would result in localized uncoupling of the marine nitrogen cycle near St. Matthew

Island and what impact such a change would have on the broader ecosystem.

The role the Gulf of Alaska hot spot played in reducing ice

The strength and persistence of cold northerly winds are the primary factors that determine

the southern extent of sea ice, although extremely warm ocean conditions during the previous

summer can delay, but not prevent, the advance of sea ice [20]. Despite the duration of cold

northerly winds in 2015, ice was not advected south of the M4 mooring. Other factors must

have helped limit ice extent. One possible influence was the warm conditions that persisted in

the Gulf of Alaska in 2015 [23].

Fig 6. Chlorophyll fluorescence at M2. Data were measured on the Prawler.

https://doi.org/10.1371/journal.pone.0185464.g006
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A pair of sea surface temperature (SST) maps shows the apparent intrusion of warm water

into the Bering Sea (Fig 8). In late February cold water is evident north of M2 with ~4˚C sur-

face water south of M2. Nine days later, waters north of M2 (e.g., 58˚N) remained cold, but

south of the mooring SST had warmed by ~1˚C. Such warming in mid-winter is only possible

through advection.

Water from the Gulf of Alaska enters the Bering Sea through the Aleutian Passes, but the

greatest net transport of shelf water is through Unimak Pass [14]. During winter,

>0.4 × 106 m3 s−1 of Gulf of Alaska shelf water flows northward into the Bering Sea through

this pass, advecting heat, salt, nutrients and zooplankton onto the southern Bering Sea shelf. In

addition, some Gulf of Alaska water that enters the Bering Sea through other Aleutian Passes is

advected onto the shelf through Bering Canyon, but the magnitude of this flow appears to be

much weaker than that through Unimak Pass [14]. During the winter months, approximately

half of the water on the southern Bering Sea shelf is replenished by water from the eastern

Bering Sea slope via Unimak Pass and Bering Canyon [14].

Fig 7. Nitrite. Concentration of nitrite within 12 m of the bottom in the vicinity of St. Matthew Island (59˚N– 62˚N, 50–100 m water

depth). Color shading represents years with predominantly warm (red) or cold (blue) temperature anomalies at the M2 mooring.

Numbers along the top indicate the number of stations analyzed.

https://doi.org/10.1371/journal.pone.0185464.g007

Fig 8. Sea surface temperature. SST for (A) 20 February 2015 and (B) 9 days later on 1 March. NOAA High Resolution SST

data provided by the NOAA/OAR/ESRL PSD, Boulder, Colorado, USA, from their web site at http://www.esrl.noaa.gov/psd/.

The location of mooring site M2 is indicated.

https://doi.org/10.1371/journal.pone.0185464.g008
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Moorings have been deployed in Unimak Pass on multiple occasions (Table 1). Dividing

the data set into warm months (May–September) and cold months (October–April) and then

calculating the mean flow through the pass, reveals the strong seasonality of the flow—weakest

in summer (6.2 cm s-1) and strongest in the cold months (21.3 cm s-1). Maximum correlation

of flow through Unimak Pass occurs with alongshore (toward 225˚) winds [24]. A linear

regression on the daily flow through Unimak Pass (U; cm s-1) and the alongshore (toward

225˚) NARR winds (W; m s-1) provided the following relationship:

U ¼ 13:0 � 2:4 W ð1Þ

with an R2 = 0.45. Using SST anomalies from a location just upstream (54.625˚N, 161.125˚W,

star in Fig 1) of Unimak Pass, the derived flow (U) into the Bering Sea was color-coded with

the temperature of the water (Fig 4C). During March–May each year (2014–2016) northward

flow of Gulf of Alaska water through Unimak Pass was largely positive and varied on time

scales of days to weeks. However, while warm anomalies were sporadic in March–April 2014,

warm conditions were persistent in spring 2015 and 2016 (Fig 4C). In addition, the northward

flow of warm water through Unimak Pass was more persistent in March 2015 than in 2014 or

2016, and this was the month with particularly cold north winds in the Bering Sea (Fig 4A).

Strong, positive temperature anomalies developed in the northeast Pacific basin in winter

of 2014 [23]. The anomalies were strongest (>2˚C) in the basin off the Oregon and Washing-

ton coast. During the summer of 2014, the anomaly expanded shoreward, and by autumn, the

SST anomalies on the shelf were ~3˚C from California northward to the Alaskan coast and the

Gulf of Alaska [25]. In 2015, the SST on the shelf to the east of Unimak Pass were particularly

warm, and it is this heat that was evident in Fig 4C as this water was advected into the Bering

Sea and onto the shelf. While SST in the coastal Gulf of Alaska cooled in 2016, it was still

warmer than normal [26].

An examination of the monthly-averaged flow through Unimak Pass (Fig 9; color-coded

with monthly-averaged SST anomalies from the Gulf of Alaska, star in Fig 1) indicates that

January–February 2015 had particularly strong flow from the Gulf of Alaska into the Bering

Sea. In addition, SST in the Gulf of Alaska was particularly warm. Only in one other year,

2003, out of 37 years, was anomalous warm water advected onto the Bering Sea shelf in winter,

and during that year the flow was weaker than what was observed in 2015. That year (2003)

was also characterized with a low concentration of sea ice on the southern shelf (Fig 2). In

2016, SST remained warm, but the flow into the Bering Sea was weaker, especially in the winter

months.

Table 1. Deployment period of moorings deployed in Unimak Pass.

Deployed End of Record Length of record (days)

25 March 1980 14 August 1980 142

21 February 1995 18 January 1996 335

26 September 1996 25 September 1997 365

7 May 2001 19 June 2001 44

13 May 2002 1 August 2003 80

8 May 2014 30 May 2014 23

Moorings were deployed at approximately 54.32˚N, 164.77˚W and measured bottom flow and temperature

and salinity.

https://doi.org/10.1371/journal.pone.0185464.t001
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Final comments

The presence of sea ice in March and April determines whether the southern Bering Sea will

be warm or cold. Our analysis indicates that the more persistent the ice, the colder the depth

averaged temperature at M2. In addition, in years with no sea ice during the winter and early

spring, the amount of heat in the water during the previous summer strongly influences the

temperature in the following year. Finally, the low ice extents in 2014 and 2016 appeared to be

primarily a result of anomalously weak northerly winds, but in 2015 strong northward flow of

warm Gulf of Alaska water through Unimak Pass likely contributed to limiting ice extent on

the southern shelf. This warm water resulted from the positive temperature anomalies that

dominated the coastal Gulf of Alaska in 2015. With the available data, it is not possible to

determine whether the warm ocean temperatures in the Gulf of Alaska or the magnitude of

the northward flow was more important in limiting ice over the southeastern Bering Shelf, but

we suggest that it was a combination of both strong transport and warm ocean temperatures

in January-March together that limited sea-ice advection.

This second occurrence of consecutive low-ice/warm-ocean years lends support to the par-

adigm that the Bering Sea has shifted from a system with high year-to-year variability to a sys-

tem of stanzas–multiple years of warm followed by multiple years of cold. It is not understood

what may have caused such a shift, or if it is just a temporary change, but, hopefully, examina-

tion of the large-scale climate models can provide insight into this question.

While 2014–2016 were similar to 2001–2003 (the first three years of the previous warm

period) in limited ice extent, warm ocean conditions in the vicinity of M2, and localized high

nitrite values, there were some subtle differences. At M2, the timing of the spring chlorophyll

bloom was earlier (~2 weeks) in 2014 and 2016 than in 2001–2003, while at M4 the timing was

more comparable between the two periods [27]. While the maximum ice extent in 2001–2003

reached 58˚N at least briefly each year, it retreated earlier than in 2015 and 2016 (Fig 4). Of

these six years, 2015 had the most extensive ice that persisted near M4 for approximately two

months, resulting in a more extensive cold pool observed by Duffy-Anderson et al. [21]. The

warm water extended farther north in the earlier warm period (2001–2003), likely narrowing

the transition zone between the warm southern shelf and the cold northern shelf which begins

at ~60˚N [6]. Each of these (timing of sea-ice retreat, location of the transition zone and the

timing of the spring phytoplankton bloom) likely has an effect on the ecosystem.

Fig 9. Flow through Unimak Pass. (top panel) Monthly mean derived current through Unimak Pass (Eq 1). The line is

color-coded to indicate the SST anomaly upstream near the Shumagin Islands (star in Fig 1, 54.625˚N, 161.125˚W).

Positive indicates inflow into the Bering Sea. (bottom panel) The monthly mean anomaly for flow through Unimak Pass.

https://doi.org/10.1371/journal.pone.0185464.g009
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This latest string of three warm years apparently ended this year (2017). In March, sea ice

had covered M4, and the ice edge was near or at M2 on 13 March 2017 (http://www.weather.

gov/afc/ice), but by June 2017 the depth-averaged temperatures at M2 were average, indicating

that ocean temperature near M2 in 2017 (like the 2006 transition between the previous warm

and cold stanzas) will likely be average. With this end of a warm stanza, questions arise. Will

the Bering Sea continue in a pattern of warm/cold stanzas? On a broader note, if the southern

Bering Sea has shifted from high interannual variability to a pattern of stanzas of warm and

cold years, what will be the impact on the Bering Sea ecosystem? Specifically, will these three

years suffice to examine one of the primary hypotheses that resulted from the Bering Sea Pro-

gram: that multiple consecutive years of little or no sea ice on the southern shelf would result

in poor young-of-the-year pollock survival in the second and succeeding years [7].
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